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ABSTRACT

Let E be a normed linear space, A a bounded set in E, and G in an

arbitrary set in E. The relative Chebyshev center of A in G is the set

of points in G best approximating A. We have obtained elsewhere general

results characterizing the spaces in which the center reduces to a singleton

in terms of structural properties related to uniform and strict convexity. In

this paper an analysis of the Chebyshev norm case, which falls outside the

scope of the previous analysis, is presented.
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SIGNIFICANCE AND EXPLANATION

Suppose we have a series of experiments such that the results of each experi-

ment are represented by a function. Let the set of such functions be denoted by

A. It is then useful to find a function which would "best represent" (or "best

approximate") the functions of the set A. This type of procedure is routinely

followed, e.g., in the construction of weather maps. Several norms, i.e., mea-

sures of discrepancy, could be used, and the norm chosen depends on the problem.

The set of "best" approximants is called the Chebyshev center of A. When the

approximants are restricted to belong to a certain family, such as ordinary alge-

braic polynomials of restricted degree, trigonometric polynomials, exponential

functions or a nonlinear family of rationa2 functions, then it is called the

relative Chebyshev center of A in the given family. It is especially impor-

tant to know when the center consists of one function only. Questions of this

type in general norms were studied by the authors in a previous publication. In

the present report the frequently useful case of the Chebyshev (or uniform) norm,

which falls outside of the scope of the general framework, is examined for

quite general families. Necessary and sufficient conditions for the relative

Chebyshev center to consist of one function are established. o r

'". t

The responsibility for the wording and views expressed in this descriptive summary

lies with MRC, and not with the authors of this report.



RELATIVE CHEBYSHEV CENTERS IN NORMED LINEAR SPACES, PART II

Dan Amir and Zvi zieqler(2)

INTRODUCTION

When E is a normed linear space and A C E is a bounded set in E, then the

Chebyshev center of A is the set in E of elements best approximating A.

When G is another set in E, we may consider the set of elements in G best

approximating, from amongst all elements in G, the set A. This is called the

relative Chebyshev center of A in G.

The first part of this work, to be published separately, develops the con-

nection between structural properties of relative centers, convexity properties

of the spaces, and the closeness of the resemblance of the space to a pre-Hilbert

space. This extends the work of Garkavi [7], Day, James and Swaminathan [3) and

of Rozema and Smith [17].

In the present paper we restrict our attention to the case where the space

is C[a,b endowed with the uniform norm, i.e., we search for

min(max I1f - uill

ueF feS

where S is the set of functions to be approximated and F is the approximating

family. This type of problem has been studied by several authors in recent years

(see e.g., [4], (6], [9], [13]). Mixed norms have also been discussed.

For example, the problem of finding min( 1f - u 1. + f -

involving the k and uniform norms, for two functions, has been investigated

by Ling, McLaughlin and Smith [14]. Another, somewhat related problem, involves

vectorial approximation (see e.g. (2], [8]).

Work completed while the second author was visitina the Mathematics Research

Center, University of Wisconsin-Madison.
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(2) Technion, Haifa, Israel.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and
partially supported by a grant from the Israeli National Academy of Sciences.



We focus our attention on the case where the approximating family is n-uni-

solvent. This is the natural framework for examining questions of uniqueness

cf best approximants. Despite the fact that the problem at hand can be reduced

to the case where only the lower and upper envelopes are considered, there are

inherent complications. A more manageable precursor of the type of difficulties

encountered here occurs in the study of approximation of discontinuous functions

(see e.g. [16]). We introduce the concept of an Extended n-unisolvent family,

and then establish, through a somewhat delicate analysis of patterns of sign

changes, the full characterization of the situations where the center consists

of exactly one element.

-2-



1. General Characterization of the Center

This section is devoted to a brief discussion of general results concerning

centers in C[0,1]. We recall the simple observation that in this particular

norm a reduction to the case involving two functions, the upper and lower enve-

lopes, is possible. We then present a proof of the characterization theorem for

centers with respect to general n-unisolvent families, which employs ideas to be

utilized in the proof of the main theorem in Section 2.

The following siL._e observation has been made by several authors (see e.g.

[5]). When ACC[0,1] is compact, then the functions AU(t) = sup{f(t);f e AI and

A (t) = inf{f(t);fe A} are continuous. Furthermore, when ge C[0,1] we have
L

r(g,A) = sup{ I1f - gll ; fe A}

= sup{j f(t) - g(t)l ; fe A, te [0,1]}

= sup{max(Mu(t) - g(t), g(t) - ALtt); te [0,11)1

= max (H1AU - g11 , jg - All) = r(g;A u,AL ).

Hence, the problem of relative centers of compact sets in C[0,1] is reduc-

ible to a problem of relative centers for pairs of functions (f,g), with f<g.

The latter type was discussed in a general framework in Section 2 of 11]. In the

subsequent analysis we restrict ourselves to unisolvent n-parameter approximating

families, and for the corresponding problems will establish existence, character-

ization and uniqueness properties.

Let F CC[0,1] be an n-parameter approximating family, and define the relative

center of (f,g) with respect to F (in the Chebyshev sense), by

Z(F;f,g) = 1u* e F;r(u*;f,g) = min(r(u;f,g);u e F)} (1.i)

Note that the existence of such u* is assured by compactness; furthermore,

-3-
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it is assured even for families which are dense compact on X (i.e., families

G such that every bounded sequence of elements of G has a subsequence con-

verging pointwise on a dense subset Y of X to an element g of G). This

was proved by Dunham [6].

We now restrict ourselves further, to unisolvent families. We start by

recalling some of the relevant definitions and properties. For details and a

thorough discussion of the place such families occupy in Approximation Theory,

see e.g. [15].

Definition 1.1: The n-parameter approximating family F = {F(a;t);a f S C R n

tn

of functions defined on [0,1] is n-unisolvent if for any given set {t i}i= of
1. 11

distinct points in [0,11 and any set {yi} n  of arbitrary numbers, there
1i=1

exists a unique a such that

F(a;t.) = Yi' i=l,...,n. (1.2)

Lemma 1.2 (see [15] ,p.72]: The solution F(a;t) of (1.2) is a continuous

function of the t.'s and the yis, i.e., given e>0, t,y, there exists a

6>0 such that

max(II - t' 1,I1 y - yi 11)<r * F(a;t) - F(a';t)II< E (1.3)

where a' is the solution of (1.2) for t', y'.

Applying the standard limit argument used for T-systems, we deduce

Corollary 1.3: If F is n-unisolvent and a 7 b, then F(a;t) - F(b;t) has at

most n-I zeros in [0,1]. Here non-nodal zeros are counted twice (an interior

point t is a non-nodal zero of f if f(t 0 ) 0 and f does not change sign at t ).

We conclude that for a fixed t, the mapping y-).F(a;.) is a homeomorphism

of S onto F. Hence, each bounded compact set in C[0,11 has a relative

-4-



Chebyshev center in F. We recall, furthermore, that analogues of the classi-

cal results for Chebyshev sets are valid for general n-unisolvent families,

to-wit,

Lemma 1.4 ([15],p.9 3): Let F be n-unisolvent on [0,1] and let fe C[0,1].

Then f possesses a unique best Chebyshev approximation characterized by the

existence of an n+l-point alternance.

Coming back to the problem at hand, we introduce now some additional notations

and definitions, tailored for our needs.

Definition 1.5: The set (tl,...,tk) is called a k-point alternance for

the approximation by u to f and g (abbreviated as the (u;f,g)-approximation)

if either

f(ti) - u(t.) = uti) - g(ti) = r(u;f,g), i=l...,k-l,
i i+l i+"

or (1.4)

u(t.) - g(t.) = f(ti) - u(ti) = r(u,f,g), i=l,...,k-l.

A point t such that f(t0 ) - u(t 0 ) = r(u;f,g) is called a (+)-point,

while a point t0  such that u(t0 ) - g(t0 ) = r(u;f,g) is called a (-)-point.

Both kinds are called (e)-points. Following Dunham [5], we introduce the

following definition:

Definition 1.6: The point t is called a straddle point with respect to tne

(u;f,g)-approximation if it is both a (+) and a (-)-point, i.e., if

f(t 0 )  U(to 0 = u(t 0) g(t 0) r(u;f,g). (1.5)

We are now ready to state the first theorem for relative centers of (f,q)

with respect to unisolvent families. The theorem is duf to Dunham [5]. We

present here our nwn 1r-1f, which is different from Durham's, since our methods
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will be used subsequently to obtain further results.

Theorem 1.7 [5]: Let f,g eC[o,l], with f>g, and let F be an n-unisolvent

family in C[0,1]. Then u*E Z(F;f,g) if, and only if, either: a) (u*;f,g)

has a straddle point, or b) (u*,f,g) has an n+l point alternance. In the

latter case, z(Ef,g) = {u*}.

Proof: 1) Sufficiency: If (u*;f,g) has the straddle point to, then for

each u

r(u; f g)>!(f-g) (to)= r(u*;f,g),

completing the proof in this case. Suppose next that (u*;f,g) has the n+l-point

alternance tO ... t , and assume for definiteness that

f(ti) - u*(t.) = u*(ti) - g(tl) r(u*;f,g), i=0,1 ... n. (1.6)
1 i+l i+l

For each ue Z(F;f,g) we must have

max[f(t.J - u(ti), u(ti) - g(ti)] < r(u*;f,g), i=O,l,...n.

Combining with (1.6), this yields

i+l(-l)i [u(t ) - u*(t.) > 0, i=0,1,.....n.
1 1 -

Thus, u*-u has at least n zeros (where multiplicities are counted as in

Corollary 1.3). This is possible, in view of Corollary 1.3, only if u* = u

Hence, u* is the only element of the center.

Necessity: Assume that u* has no straddle points and that it has only k+l

points of alternance, O<k<n. Since (u*;f,g) has no straddle points, we have

2r(u*;f,g) - 1f - g~l = 56>0. (1.7)

With no loss of generality we may assume that the first (e)-point t0 is a

(+)-point. We then sequentially define

-6-



t o  minft; t is a (+)-point)

= min{t; f(t) - u*(t)> r(u*;f,g) - 26}

t I = min{t; t is a (-)-point}

to= max{t; t<tl, f(t) - u*(t)> r(u*;f,g) - 26)

= min{t; t>to, u*(t) - g(t)> r(u*;f,g) - 26)

t= min{t; t >t t is a (+)-point)

etc. Let now A. [titi], i=0,...,k. There are k+l such intervals since

each interval contains precisely one of the alternance points. Observe that

the A. 's are disjoint closed intervals satisfying A < A < ... < A

A 0  1 <k.

Furthermore, all (+)-points are in UA2i, while all (-)-points are in

UAi. Note finally that
2 i+l

max(If(t) - u*(t)j ,Iu*(t) - g(t)I) <r(u*;f,g) - 26, for all
k

te [0,i]\LU  A (1.8)
i=0

Choose now a sequence of points t1 <t 2 < ... <tn_1  satisfying the conditions

a) t i  e . ..., 1 < i

b) if n k (mod 2), then

t e (tk_,) .k. k+l < i < n-l (1.9)

If n-k(mod 2), then (1.9) is required to hold for i <n-2,

and t 1  i.

We discuss first the case n/k. We adjoin a point t0  in A0 , and construct

a function uEF satisfying

(t ) = u*(t ) + n ,

(ti) u*(ti), i=l....n-I

-7-



where n is chosen so small that IIu-u*II < 6. This is possible in view of

the continuity properties expressed in Lemma 1.2.

Note that u-u* cannot vanish at any point other than the t 's in view

of the unisolvence. Hence, u(t) >u*(t) on A0 , and in view of the way the

t.i 'S are placed, we have

(-1) [u(t) - u*(t)] >0, if te A., i=0,1,...,k.

Thus, we obtain

0 <r(u*;f,g) - d<f(t) - u(t) <f(t) - u*(t), tE A2 i

i=0,l .... k-l.

0 <r- 6<u(t) - g(t) <u*(t) - g(t), t A2i+1

k
On the complement of U A., we clearly have

i= 0

max( If-u I, Iu-g I) <r(u*;f,g).

Combining these inequalities, we conclude that r(u;f,g) <r(u*;f,g), i.e., that

u* is not in the center.

The second case is similarly handled. q.e.d.

Corollary 1.8: The point t is a straddle point of some triplet (u;f,g),

if and only if

f(t) - g(t) = 2r(F;f,g) (1.10)

Thus, if t is a straddle point for one triplet, it is a straddle point for

all triplets, and u*(t) = [f(t) + g(t)]/2 for all u*E Z(F;f,g).

Proof: Suppose first that (1.10) is satisfied, and let u*e Z(F;f,g). Then

max[f(t) - u*(t), u*(t) - g(t)] < r(u*;f,g) = r(F;f,g)

Combining this with (1.10), it follows that

f(t) - u(t) = u(t) - g(t) = r(u*;f,g) = r(F;f,g), (1.11)

-8- i



so that t is a straddle point of (u*;f,g). Conversely, if t is a straddle

point of (u;f,g), then by the previous theorem, u*e Z(F;f,g), and using (1.11)

we have (1.10).

The last observation in the corollary is a consequence of (1.11).

-9-

9



2. Uniqueness

We examine in this section the conditions under which the center will reduce

to a singleton. It will be shown that the situation here is more interesting than

the corresponding one in the approximation of one function, and an analogue does

not exist. An intermediate situation, where some of the difficulties are begin-

ning to show, occurs in the study of the approximation of discontinuous functions

(see e.g. [16]).

The first result we have in this direction is a simple consequence of the

definition of n-unisolvence and Corollary 1.8.

Lemma 2.1: Let F be an n-unisolvent family and let f,g, f~g be two continuous

functions. If there exist n straddle points (i.e., points satisfying (1.10))

then Z(F;f,g) is a singleton.

The complete analysis of the conditions under which Z(F;f,g) is a single-

ton requires more than standard perturbation methods, due to special phenomena

which do not have a counterpart in the theory of approximation of one function.

For example, it will follow from the subsequent discussion that if f,g are con-

tinuously differentiable and F = [l,xJ, then the existence of one interior straddle

point suffices to ensure that Z(F;f,g) is a singleton.

We consider first the simplest case, where all the functions under consider-

ation are n-times differentiable.

Definition 2.2: The n-parameter family F of n-times differentiable functions

will be called an extended n-unisolvent family if for any prescribed set of

"Hermite-data", i.e., data of the form

mU ( j ) (t.) =  aJ ij l ,1 ,1 k -; k.=n (2.1)

1, ,- .. i=l

there exists a unique u eF satisfying (2.1).

-10-



This generalizes, to unisolvent families, the concept of an Extended

Tchebycheff system, which proved useful in the study of Tchebycheff systems

(see [12]). Naturally, each Extended Techbycheff system is an extended n-uni-

solvent family.

Remark: The natural analogue of Lemma 1.2 is valid for extended n-unisolvent

families.

(n) (n)
Let now FCC 10,1], f>g, fge C ([0,1]; let tO be an interior straddle

point, and let u*e Z(F;f,g). Then

f' (t o = u*' (to) = g'(t O ) (2.2)
0 0 0

Indeed, assuming that f' (t ) >u* (t ), we observe that in a small right neighbor-
0 0

hood of t0 , the inequality f(t) - u*(t)> f(t0) - u*(t ) is valid in contra-

diction to the assumption that

f(t0 ) - u*(t 0 ) = r(u*;f,g).

A similar analysis, involving the left neighborhood, obtains if f'(t 0 ) < u*(t 0).

Hence, f'(t O ) = u*'(t ). The r.h.s. equality is similarly derived. Note that

this type of result does not extend to second order derivatives, where only the

weak inequalities f"(t 0 ) < u*"(t 0 ) < g"(t 0 ), have to hold. If f"(t 0 ) =g"(t0

then the chain collapses, and u*"(t 0 ) has to take the common value. A similar

situation, where only weak inequatlities are assured, exists at the end points,

starting with the first derivative.

This discussion motivates the following definition.

Definition 2.3: Let F be an extended n-unisolvent family, and let f>g.

The straddle point t has the deficiency index k, k<n, with respect to

00(F;f,g) if k Hermite-type conditions at t O are imposed on the elements of

the center by the condition that tO  is a straddle point.

-11



The following observations can be easily deduced from the analysis preced-

ing Def. 2.3.

Observation 1: The smoothness of f and q is not an integral part of the defi-

nition. If f and g are only continuous then a straddle point may have

deficiency index 1. In the case of differentiable functions, the deficiency

index of an interior point is at least 2. The subsequent analysis can be car-

ried out, with technical modifications involving one-sided Dini derivatives,

for non-smooth functions.

Observation 2: Let f,g L c(n) W. Let t Kt, straddle -oint in int(I), and let

k be its deficiency index. If k<n, then it must be even.

(n)
Observation 3: Let fq E C (I). - a r.- dilt, :-int with

deficiency k if and only if k is the lar it st inteljer sun that

f(t) = g(t) = Ilf-gI1 = 2r(-;f,q),

(2.3)

f (t) = g (t), j=l. k-I.

We recall now some notation concerning sign changes of real valued sequences

and functions (cf.[12], where the notation is extensively utilized.)

Notation: 1. Let x = (xl ,...,x N ) be a finite sequence of real numbers. Then

S (x) denotes the maximal number of sign changes of the sequence where the

zeros (if they appear) are assigned arbitrary signs.

For example S [(1,0,0,1 ) = 2, S [(1,0,0,0)1 = 3.

2. Let a be a real valued function defined on a subset A of the real line.

Then

S +(a) = sup{S+[a(t 1.... ,(tN } (2.4)

where the supremem is taken over all N and over all choices of ordered N-tuples

from A.

-12-



Let de Z(F;f,g) and let 7 be a straddle point of deficiency k. We

now proceed to define the concepts of a i-deficiency and a ii-induced boundary

straddle point.

We start by noting that

f(k) < (k) (.) < g(k) M (2.5)

Clearly, f ( ) <g (k)(g), since otherwise the deficiency is greater than k.

Assume that d(k) (9) = g (k)(). There are two possibilities: a) j is not

a cluster point of (+)-points. b) j is a cluster point of (+)-points. We

will show that in case b)

u (Y) (Y) = kg () (2.6)

for all u e Z(F;f,g). Indeed, since y is a straddle point of deficiency

k, we must have

u (k- y) =g (y) - f (y)

for all ue Z(F;f,g). If u ( ) <d (k)(), then, in a sufficiently small neigh-

borhood of 9, u < 6. Let t* be a (+)-point of d, lying in this neighborhood.

Then we have the following chain of inequalities

r(u;f,g) >I If-uI >__ (f-u) (t*) > (f-i) (t*)= IIf- il = r(F;f,g)

contradicting the assumption that ie Z(F;f,g). Hence (2.6) must hold. The same

argument can be extended to higher order derivatives, if u has a higher degree

of coincidence with g. We are thus led to the following definitions.

Definition 2.4: Let iie Z(F;f,g) and let g be a straddle point of deficiency

(kc) kk. If a () = g () and V is not a cluster point of (+)-points, then

is called a (-)-boundary straddle int. If Qk(S) = f (S) and 9 is not a

-13-
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cluster point of (-)-points, then j is called a (+)-boundary straddle point.

Definition 2.5: Let 5e Z(F;f,g) and let be a straddle point of defic-

iency k. If :? is a cluster point of (+)-points and m is the largest integer

O<n-k such that

(J) (I) = g(J) M. j=0,l,...,k+m-l, (2.7)

then m is the Q-induced g-associated deficiency of Y. If is a cluster

point of (-)-points and m is the largest integer O<mn-k such that

-(J)() 
= f(J)( ), j=0,l,...,k+m-l, (2.7')

then m is the 5-induced f-associated deficiency of : . The number m+k=h

is called, in both cases, the total deficiency of j.

Remark: Note that the total deficiency of Y is independent of fi, since by

the previous analysis, if 6 satisfies (2.7'), then

u (j) M = gJ) (Y), j=0,l,...,h-l (2.8)

for all ue Z(F;f,g), while if il satisfies (2.7') then

u(J)-(D = f(J)( ), j=O,l,...h-l (2.8')

for all u eZ(F;f,g).

We return now to the characterization problem, and recall that unicity

has been established for the case where there are n straddle points. Hence,

we may assume in the subsequent discussion that the number of straddle points

is smaller than n.

Let ue Z(F;f,g) and let E be the set of its (e)-points. Define a

mapping x on E as follows:

-14-



t + Ht + kt if t is not a straddle point

ht-1

U {t + Ht + 9. + j}, if t is a non-boundary straddle point
x(t) = j=0 (2.9)

h
t

U {t + H + t +j} if t is a boundary straddle point
j=O t

Here ht  is the total deficiency of t, Ht = t hs ' and 9t is the num-

ber of boundary straddle points that are smaller than t.

Define a function a on x(E ) as follows:
u

+1 if x {s} is a (+)-point

-1 if x {s} is a (-)-point

+1 if s=t+Ht+kt+ht , where t'l is a (+)-boundary straddle point,

a(s) = or if s=l+H +X1 when t=l is a (+)-boundary straddle point.

-1 if s=t+Ht+k t+ht, where tyil is a (-)-boundary straddle point,

or if s=l+HI+k 1 , when t=l is a (-)-boundary straddle point.

0 if x- {s} is a straddle point which is not a boundary straddle

point.

We are ready to fully characterize the case of uniqueness.

Theorem 2.6: Let f,g eC (I), f>g, and let F be an extended n-unisolvent

family. Then the set Z(F;f,g) is a singleton if and only if either:

r
a) h.>n (2.11)i=l -

where hl, ...,hr are the total deficiencies of the straddle points.

or,
+

b) There exists a function u*E Z(F;f,g) such that S (a)>n (2.12)

where a is the function corresponding to u*, defined in (2.10).

-15-



Remark 1: Note that the theorem implies that if there are no straddle points,

the function u* is the only element of Z(F;f,g) if and only if there exists

an (n+l)-alternance.

Remark 2: The proof carries over, mutatis mutandis, for the case where f,g

are non-smooth. The technical modifications involve the use of one-sided

Dini derivatives.

Proof: Sufficiency: Assume first that (2.11) holds. Then we have n Hermite

type conditions that u* must satisfy in order to be in Z(F;f,g). Since

F is an extended n-unisolvent system, we conclude that these conditions deter-

mine u* uniquely.
+

Assume next that there exists a function u*e Z(F;f,g) such that S (a)>n.
wI

Let xI , ... Ox be a sequence of points of x(E ) for which
n+l u*

S [(C(x ),...,a(x n+))] = n.

Let u be any other function in Z(F;f,g), and consider the difference

v=u-u*. We will prove that v=O. Observe that although v is not a function

of F, is has to vanish identically if it has n zeros (counting multiplicities).

Indeed, if v has n zeros then u* and u satisfy the same n Hermite

data, and therefore must coincide since they belong to an extended n-unisolvent

family.

Consider the ordered sequence x, ..., xn+l. If x. is the image of a
-1

(+)-point then v[x (x.)]>O. Similarly, if x. is the image of a (-)-point,1 - 1

then v[x- (xi)1<O. Note that if t is a nonboundary straddle point with

total deficiency h then there are at most h points in the x. -sequence whose

pre-image is t, and that

(j) -v Ct) = 0, j=0,l,...,h-l . (2.1)
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If t is a boundary straddle point, then it has a most h+l image points in

(h) (h) -
the x.-sequence, and we have v (t)>O for a (+)-boundary point, v (t)<0

for a (-)-boundary point.

We now construct the vector (t ,...,t ) as follows: {t n+l is a
1 n+l il

weakly ordered sequence composed of pre-images of the xi's, according to the

following rules: (1) pre-images of the (e)-points which are not straddle points

are in (t1 ,...,tn+). (2) Let t be a straddle point of total deficiency h,

which either is not a boundary straddle point, or is such that v (t)=0. If,

in the x.-sequence, there are j points whose pre-image is t, then t will1

appear in the t.-sequence j times. (3) Let t be a boundary straddle point
1

of total deficiency h, such that v(h) (t)*O. If there are j<h points whose

pre-image is t, then t will appear j times in the t.-sequence.

11
If, however, there are h+1 points in the x.-sequence whose pre-image is t,

the point t will appear only h times, and an additional point t' near t

will be chosen. If t=l, then t'<t, whereas if til, t<t'. We observe that

if t' is sufficiently near t, the sign of v(t') is positive if t is a

(+)-boundary point, and is negative if t is a (-)-boundary point.

The conformity of signs between the v(t.)'s and the a(xi)'s implies now that

S [vMt ),...,v(t n+l)] = n (2.14)

Let v(t p) be the first non-zero entry in this sequence. If such an

entry does not exist, then v(t) has more than n zeros (counting multiplic-

p-i
ities), and the proof is complete. Thus, v has p-l zeros, {til1  , in

[t ,t p). Let next v(t q), q>p+l be the last entry in the chain of non-zero

entries following v(t p). By (2.14), the values v(t ),...,v(t ) alternate in

sign, so that continuity implies the existence of q-p zeros in (t ,t ).
p q

We have therefore q-1 zeros in [t ,t ). If q-n+l, the proof is finished.
lq

If not, v(t q+l)=0, and we have to examine two possibilities:
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i) v(ti)=0, i>q+l. In this case we are assured of q-l+(n+l)-q = n

zeros and the proof is finished.

(ii) There exists a first non-zero entry v(t ), r>q+l. It will suffice
r

to show that in (t ,t ) there exist r-q zeros, so that in [t ,t ) there
q r 1 r

are r-l zeros. The rest of the proof then follows by repeating (a finite

number of times) the steps outlined above.

If r-q is odd then the signs of v(t r) and v(t q) are different by

(2.14). On the other hand, the number r-q-l of zeros in (tq tr) following

from the definition of t is even. Thus, there has to be another point ofr

sign change, or a higher multiplicity of one of the zeros. In either case,

there will be r-q zeros in (t ,t ), concluding the proof.
q r

Necessity: We assume that (2.11) does not hold, and that there exists a func-

tion u 0eZ(F;f,g) such that S (a) = p<n. Note that, in view of Theorem 1.7,

this implies the existence of straddle points, and lf-gli- 2r(F;fg). we

now proceed to exhibit another function u1 u 1,u 0 , in Z(F;f,g). The method

of proof bears some resemblance to that used in the proof of Theorem 1.7, with

appropriate modifications necessitated by the existence of straddle points.

We start with the case where no straddle point is a cluster point of (e)-

points. Let y.,...,Y,lI<r, be the straddle points, and let their deficiencies

be kl,... ,k, with

r
k k<n (2.15)

Since no yi is a cluster point, it follows that the total deficiencies in this

case are equal to the ordinary deficiencies. For each i, let c(yi) be

chosen sufficiently small, so that

(y. - (y. y. +- e(y.
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does not contain any (e)-points except yi" Let

E = min E(y) and v. = (yi-, y+C), il ... n.

r
Let 10 = [0,1]\ U v., and observe that, since 10 is a closed set

i=l
containing no straddle points, we have

2r(u0 ;f,g)- max(If(t)-g(t)I; teI 0 ) = 56>0 (2.16)

Let (yiYi+ l<i<r-l, be an interval between straddle points containing

"signed" (e)-points. If yl>0 or y <1 a similar analysis can be carried out

for [0,y ) or (y rl1], respectively.

Assume, for concreteness, that (y ,y ) contains a (+)-point; then it is in
1 r

I0 by the construction of the vi 's, and we may assume that the leftmost (e)-point in

(Yl'Yr)Io is a (+)-point, which we denote by ti 1. Note that

t il= min{t; te(yi,Yi+1 ), t is a (+)-point}

Define t i l = min{t; te(yi,Yi+l)I 0, f(t)-u (t)>r(u 0;f,g)-26}

Consider now two possibilities: 1) There exist no (-)-points in (yi,Yi+l).

Then define

t il = max{t; te(yi,Yi+l)nIO, f(t)-u (t)>r(u 0;f,g)-26}

2) There exist (-)-points in (yiYi+l ). Define

t! = min{t; te(y.,yi l)nIt is a (-)-point}
1 1i+l 0

t max{t; te(yiy )nI O , t<t!; f(t)-u (t)>r(u ;f,g)-261
il 1 i+l 0 1 0 - 0

t. = min{t; te(y.,y ftt - 0
1 ii+l) I 0  t>t i, u0 (t)-g(t)>r(u 0;f,g)-261

Note that by (2.16), t>t We may now continue this process, depending on
-i ill'

the existence of (+) points to the right of t!. If there are none, the process1

is ended by defining
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t! max{t; te(yi,Y )I u0 (t)-g(t) > r(u ;f,g)-26}.
11i+l 0'0 0

Otherwise, we define

t. = min{t; te(yi,Y )lnI0 t!<t, t-a(+)-point}1,2 i+l 0 1

and continue along the same lines. Note that in view of the finiteness of

* +
S (CL)(we have S (a)<n, in fact), the process has a finite number of steps.

We apply this procedure for all intervals containing (e)-points.

We have thus constructed a set of intervals

5
5{Aj}j= I , iU A.CI ,i=1 3 I

with the following properties:

a) Each interval contains an (e)-point. All (e)-points are contained

in the union of these intervals.

b) If A. contains a (+)-point, then

f(t)-u (t)>r(u0;f,g)-26, for all t C A. (2.17)

We call this A. a (+)-interval. If A. contains a (-)-point, thenJ J

u (t)-g(t)>r(u ;f,g)-26, for all t e A. (2.18)
0- 3

This A. will be called a (-)-interval.
3

c) If (A ...... A+} are in the same interval (y ,y. ), then their
J j+k i 1+1

signs alternate, and there exists an interval of positive length

between adjacent A's. Choose an ordered sequence in E consisting
i u0

of one (e)-point from each A., and the straddle points. Apply
1

the mapping x(t) to the sequence and construct the vector {a(si)} N

1i=l"

Here x(t) and u(s) are as defined in (2.9) and (2.10). Note that

+
S [(M(si ) ...,L(s N ))] p < n.
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We will show that there exists a function uI, u1*u0, in Z(F;f,g). We

start by noting that u1 has to satisfy the p conditions implied by the fact

that yl,.. .yr are straddle points, with corresponding multiplicities

kl, ... k, viz.

u( j ) (yi = u i=l,...,r; j=0,...,k.-l (2.19)
N

Consider next a sequence of consecutive zeros in {(s )}N. Suppose
i i=l

there are I zeros. These may correspond to the deficiency of one straddle

point, or to the combined deficiencies of several consecutive straddle points,

where no intervening (+) or (-)-points exist. There are two possibilities:

1) The Z zeros are an initial or a final segment of the vector { (s

In this case we do not impose additional conditions on u at the corresponding

straddle points. 2) On both sides of the segment of zeros, there exist non-

zero terms. Let the adjacent sign from the left (right) be denoted by

(sgn)L [(sgn)R, respectively]. If (-l) (sgn)L(sgn)R = 1, then no additional

requirements are imposed on u1 at the corresponding straddle points. If,

however, (-l) (sgn) L(sgn) = -1, then we require

(ki,) (ki.)

u (yi. u (yi,) (2.20)

where yi* is the first straddle point corresponding to the block of k zeros.

Consider finally two adjacent non zero terms. If the signs are identical

(this may happen only if at least one of the signs stems from a "signed"-

boundary straddle point) then no additional requirements are imposed on u

Suppose the terms are of opposite signs. This can happen when both correspond

to (e)-points chosen from adjacent As, say A ,Am, or when at least one of
I m mn+l

the points is a "signed"-boundary straddle point. In the first case, we choose

a point t* in (max A m, min A m+) and require

u(t*) u 0(t*) (2.21)
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In the second case, assume that the first of the two terms corresponds to a

straddle point g. We then require

Ul(9 + 2 C) = u (i + 3 C) (2.22)
1 4 0 4

Observe that the total number of zeros prescribed for u I - u0 by the condi-
+

tions of the form (2.19) - (2.22) is equal to S (a) = p. Indeed, consider

the case where (-l) (sgn) L(sgn)R = -1. The contribution of the sequence of

Z zeros to S+(a) is then Z+i, and we have, in (2.20), adjoined one zero

to the 2 zeros prescribed by (2.19). The other cases are even simpler.

We now impose n-p-l additional conditions of coincidence at 0,

u- (0) = u 0 (0), j=0,1,...,n-p-2 (2.23)

where 4 is the smallest derivative at 0 not previously prescribed.

Finally, if there exist "signed" (e)-points or "signed" boundary straddle

points, then we choose one such point t, and impose an n-th condition of the

form

(v) u () +
u tW u 0 tW+ (2.24)

where v is the smallest derivative at t not previously prescribed, and n

is a small number whose sign agrees with the "sign" of the point. If there

exist no "signed" points, we choose any straddle point t and require (2.24)

with n>0.

Since F is an extended u-unisolvent family, there exists a (unique) u

satisfying all of the n above mentioned conditions. Furthermore, u l7u

by (2.24), so that ul-u can have no additional zeros (counting multiplicities)

besides the n-l zero prescribed in the construction.

Hence, u -u changes sign exactly at the interior zeros of odd multiplicity.
1

It follows that u1 >u0 on each (+)-interval, ul<u0  on each (-)-interval.
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Furthermore, if y is a (+)-boundary straddle point of deficiency k, then

Ul>U0  in the vicinity of y, so that in view of (2.19), we must have u (k ) ()>u 0
k ) (y).

The case of (-)-boundary straddle points is similarly handled. Finally, if n

is chosen to be sufficiently small, then by the continuity property of elements

of F (Lemma 1.2) we have 1u0-u 11 <6 , so that

r r
max(u 1 (t)-f(t) 1, ul(t)-g(t) ; te[0,1]\ (i I vi)\ (Li A )] < r(u 0;f,g)i~l i=l i

Collecting these results, we deduce that ul Z(F;f,g), completing the proof

in the case where no straddle point is a cluster point of (e)-points.

We consider now the general case, and describe the necessary adjustments

in the proof. Let y be a straddle point which is a cluster point of (e)-points.

As we have noted before, the finiteness of S+(c) implies that if cI>0 is

sufficiently small, then in (Y-eI, Y) all (e)-points are of one sign, and in

(y, 9+ I ) all (e)-points are of one sign (not necessarily the same sign as

before). Note in passing that if y is a (-)-boundary point, then it can be

a cluster point of (-)-points only, by the analysis preceding definition 2.4.

The analogous result holds for (+)-boundary points.

Choose e1 as above, and let z, w be the largest (e)-point in

(Y, Y+E1 ) and the smallest (e)-point in (y-e1 , y), respectively. Let

= min{(i-9, Y-W), and let

= min{e(y); y is a cluster point of (e)-pointsI,

= min{c(yi); yi is not a cluster point of (e)-points},
1 1*

= min (E, *),

where E(yi) is as defined in the beginning of the proof of the necessity

part. Define next v.,1 10 as before and the rest of the proof can be car-

ried out with no further modifications.

q.e.d.
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We have shown that, in contrast to the situation where one function is

approximated, the Chebyshev center of a set is not necessarily a singleton.

We will now record some simple observations concerning the set of pairs for

which z(F;f,g) is a singleton.

We consider the space of pairs of functions (f,g), f,ge C[0,1], and

define p[(f,g),(f',g')] = max[II f-f' 11 , jIg-g' 1

Assertion 2.7: Let f,g, f g be a pair such that Z(F;f,g) is not a single-

ton. Then, for each c>O, there exists another pair (f',g') such that

P[(f,g),(f',g')]<E, and Z(F;f,g) is not a singleton.

Proof: Let ue Z(F;f,g). There exist r straddle points, yl,...,yr, with
r

total deficiencies hl,...,h r , £ = k h.<n. Perturb f slightly downward on
1 rp 1

one interval not containing straddle points, obtaining f' in this way. Then

clearly u CZ(F;f',g), the r straddle points remain the only straddle points,

and no new (e)-points are created. Hence Z(F;f',g) is not a singleton.

Remark: The same proof shows that if Z(F;f,g) is a singleton, but there

exist straddle points, then there exists a pair (f',g') near (f,g) for which

Z(F;f',g') is not a singleton.

However, the situation is different if (F;f,g) has no straddle ppints.

The following assertion can be easily established, using straightforward conti-

nuity arguments.

Assertion 2.8: Let Z(F;f,g) be a singleton, and assume no straddle points

exist. Then there exists a neighborhood V of (f,g), such that for each

pair (f',g') in V, the center Z(F;f',g') is a singleton, and no straddle

points exist.

Using the standard methods, we can deduce a local continuity property for

the "best approximation" operator defined for such pairs, viz.
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Assertion 2.9: Let (f,g) be a pair such that (F;f,g) has no straddle points.

Let T bedefinedon the set of such pairs by T(f,g) = Z(F;f,g). Then T is

continuous at (f,g).

-
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